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An Interface-Type Memristive Device for Artificial Synapse
and Neuromorphic Computing

Sundar Kunwar,* Zachary Jernigan, Zach Hughes, Chase Somodi, Michael D. Saccone,
Francesco Caravelli, Pinku Roy, Di Zhang, Haiyan Wang, Quanxi Jia,
Judith L. MacManus-Driscoll, Garrett Kenyon, Andrew Sornborger, Wanyi Nie,
and Aiping Chen*

1. Introduction

A brain-inspired neuromorphic computer
with superior computational capabilities
and reduced energy consumption is viewed
as a viable answer to next-generation com-
puting technology’s speed and energy
requirements.[1,2] Digital computers are
built on von Neumann architecture, which
consists of a separate processing and mem-
ory units connected by a communication
bus. Thus, continuous data transfer between
processor and memory units is required,
resulting in a significant power loss and data
transfer delay during computational opera-
tion, known as the von Neumann bottle-
neck. This has posed significant challenges
for large-scale data processing in the
Internet of Things, artificial intelligence
applications, artificial neural networks, and
machine learning systems.[3,4] Until recently,
the semiconductor industry has been evolv-
ing according to Moore’s law, which
describes how the billions of complementary
metal oxide semiconductor (CMOS) transis-
tors that are integrated into a small chip scale
exponentially to continuously enhance the
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Interface-type (IT) metal/oxide Schottky memristive devices have attracted
considerable attention over filament-type (FT) devices for neuromorphic com-
puting because of their uniform, filament-free, and analog resistive switching
(RS) characteristics. The most recent IT devices are based on oxygen ions and
vacancies movement to alter interfacial Schottky barrier parameters and thereby
control RS properties. However, the reliability and stability of these devices have
been significantly affected by the undesired diffusion of ionic species. Herein, a
reliable interface-dominated memristive device is demonstrated using a simple
Au/Nb-doped SrTiO3 (Nb:STO) Schottky structure. The Au/Nb:STO Schottky
barrier modulation by charge trapping and detrapping is responsible for the
analog resistive switching characteristics. Because of its interface-controlled RS,
the proposed device shows low device-to-device, cell-to-cell, and cycle-to-cycle
variability while maintaining high repeatability and stability during endurance and
retention tests. Furthermore, the Au/Nb:STO IT memristive device exhibits
versatile synaptic functions with an excellent uniformity, programmability, and
reliability. A simulated artificial neural network with Au/Nb:STO synapses
achieves a high recognition accuracy of 94.72% for large digit recognition from
MNIST database. These results suggest that IT resistive switching can be
potentially used for artificial synapses to build next-generation neuromorphic
computing.
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computing power and downscale of the computer size.[5] However,
the ultrahigh integration of CMOS transistors is approaching its
practical limits because of exponential increase in leakage current
with the reduction of source-drain channel widths, high power den-
sity per unit area, and rapid increase in fabrication costs.[6] In this
regard, a brain-inspired neuromorphic computing architecture with
adaptive learning ability, massive parallelism, high speed, and
energy-efficient operation may be crucial for achieving the chal-
lenges of speed and energy in next-generation computing
technologies.[3,7,8]

In recent years, emerging memristive switching devices have
been a subject of interest for resistive random access memory
(ReRAM) and neuromorphic computing, because of their low
power consumption, fast switching speed, and high-density
device integration.[8–10] Memristors are two terminal devices that
have a dielectric (switching) layer sandwiched between top and
bottom electrodes. Such a device is not only capable of storing
information, but it can also emulate biological synaptic func-
tions, and thus it can serve as a fundamental hardware element
in the neuromorphic computing.[8,11] In a biological synapse, two
neurons (presynaptic and postsynaptic neurons) are connected
by a synapse, and the analog reconfiguration of synaptic plasticity
(connection strength) due to synaptic spikes is key to learning
and memory in a human brain.[12–14] Similarly, a two-terminal
memristor can structurally and functionally mimic biological
synaptic features such as the conductance (G), corresponding
to a synaptic weight, which is updated based on the history of
its input potential.[15–18] Despite the wide range of advantages
of memristive devices in neuromorphic computing, there are still
several challenges at the device level such as poor stability, high
variability, poor retention, and endurance.[19]

So far, various types of RS materials including oxides, poly-
mers, organic, and 2D materials have been reported for the arti-
ficial synapse and their operation mechanisms can be broadly
classified as follows: redox (TiOx, HfOx, TaOx, SrTiOx, SrFeOx),
phase change (Ag4In3Sb67Te26, Ge2Sb2Te5), and magnetic and
ferroelectric (La0.67Sr0.33MnO3, HfOx, BiFeO3, BaTiO3).

[20–26]

Among these, the redox or conductive filament (CF) and phase
change RS memory generally require filament formation/ruptur-
ing and melting/quenching process, respectively.[18,27] Because of
the stochastic and abrupt nature of these processes, large device-
to-device and cycle-to-cycle variations have frequently been
observed.[2,19] This further results in wide variations in the set/
reset voltage, on/off ratio, endurance, retention and switching
speed, and therefore, hindering their practical realization.[28–31]

More recently, significant attention has been given to interface-
type (IT) RS devices, which exhibit uniform and nondestructive
resistance change induced by an interface Schottky barrier mod-
ulation.[29,32,33] Furthermore, IT switching is filament-free, homo-
geneous, and consumes low energy, making it a promising
alternative for neuromorphic applications.[9,32] The metal/oxide
Schottky interface is altered by oxygen vacancy (Vo) drift or
electron trapping/detrapping effects at the interface, which is
analogous to synaptic weight updated by the charged neurotrans-
mitters (Ca2þ, or Kþ ions) in a biological synapse. Thus, IT mem-
ristive devices can emulate the synaptic plasticity by changing
conductance based on the Schottky barrier parameters. Most of
the IT devices studied thus far have utilized metal/thin oxide
layers Schottky interface where the migration of Vo is exploited

to achieve the desired resistance state. However, controlling Vo

migration in oxides is challenging as it can be influenced by mul-
tiple factors including film thickness, defect concentration, tem-
perature, and grain boundaries, resulting in device reliability and
uniformity issues.

In this work, a simple Au/Nb:STO memristive device with
reliable IT switching characteristics is explored for biological syn-
aptic function. Different from other IT devices where switching
mechanism is mostly driven by Vo migration in oxide layers, the
proposed IT device is fully interface controlled and takes advan-
tage of charge trapping and detrapping at the Au/Nb:STO inter-
face. The Au/Nb:STO interface plays critical role in determining
the resistance states of the device in which an external voltage
stimulation inherently alters Schottky barrier parameters due
to the charge trapping and detrapping effects. The switching
mechanism of such systems has been explored carefully.[34–36]

Our previous work has shown that protons-assisted electron
trapping and detrapping are likely responsible for the switching
at metal/Nb:STO interfaces.[34] By altering voltage polarity,
amplitude, and duration, a multilevel nonvolatile analog resis-
tance window is demonstrated. The proposed artificial synapse
accurately emulates various critical functions of biological
synapse, including paired-pulse facilitation (PPF), short-term
potentiation/depression (STP/STD), long-term potentiation/
depression (LTP/LTD), and spike timing dependent plasticity
(STDP). Furthermore, the Au/Nb:STO device exhibits high sta-
bility, low variability, and continuous conductance change during
LTP and LTD cycles. The artificial neural network simulated with
such synapses leads to image recognition accuracy of 94.72% for
handwritten digits fromMNIST. These characteristics are superior
to previously reported CF-based artificial synapses and thus we
have identified interface-controlled Au/Nb:STO memristive device
as a promising candidate for future neuromorphic applications.

2. Results and Discussions

Figure 1a,b depicts a schematic of the Au/Nb:STO memristive
device and a biological synapse that the device emulates. The bio-
logical synapse is made up of presynaptic and postsynaptic neu-
rons connected at the synaptic cleft whose weight changes
depending on the transmission of neurotransmitters in response
to correlated pre- and postsynaptic spikes. This process is similar
to that of the Au/Nb:STOmemristive device, in which the flow of
charge carriers through the device varies depending upon the
interface resistance. To demonstrate the synaptic performance
of the Au/Nb:STO, RS properties should first be thoroughly
explored. Figure 1c shows a typical current–voltage (I–V) char-
acteristic of an Au/Nb:STO device measured with voltage sweep
of 0 V!þ3 V!�6 V! 0 V. A bipolar RS was observed as the
device was set (on), i.e., HRS to LRS at þ3 V and reset (off ), i.e.,
LRS to HRS at �6 V. The on and off transitions occurred at pos-
itive and negative voltages, respectively, without an electroform-
ing process, which is a typical characteristic of interface-type RS
devices.[35,37–39] The Au/Nb:STO device exhibits a high on/off
ratio of �105 at þ0.4 V, indicating a large memory window
for potential multilevel data storage applications. To confirm
the device reliability, different Au/Nb:STO devices were prepared
and their I–V characteristics along with the on/off ratio were
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analyzed in Figure S1, Supporting Information. All devices
exhibited large I–V hysteresis with device-to-device, cell-to-cell
(same device), and cycle-to-cycle (same cell) on/off ratio variabil-
ities of �40, 32, and 9.7%, respectively. This suggests that the
Au/Nb:STO IT memristive devices possess good reproducibility,
reliability, and stability as compared to FT memristors. These
characteristics make the device suitable for artificial synapses
and neuromorphic applications.[40–42] The RS effect in our
device is mediated by charge trapping/detrapping and a corre-
sponding modulation in Schottky barrier parameters (i.e., bar-
rier height, ΦB and depletion width, Wd) at the Au/Nb:STO
interface.[35,37] A single-crystal Nb:STO substrate was inten-
tionally chosen to mitigate undesired effects from defects, grain
boundaries, and oxygen vacancies migration. However, local-
ized surface trap states such as lattice distortion and point
defects can be generated during electrode deposition, which
would facilitate the charge trapping/detrapping at the Au/Nb:
STO interface. The low forward voltage region under the
HRS was fitted based on Schottky emission theory.[35] The
extracted value for ΦB and ideality factor (n) under the HRS
were 0.9 eV and 2.6, respectively, which suggests that the volt-
age-dependent charge trapping/detrapping process controls the
RS at the Au/Nb:STO interface.[36,37] A detailed study on the RS
mechanisms in the Au/Nb:STO interface-type device is pre-
sented in our previous work, which explored the critical roles
of protons (from moisture) in charge trapping/detrapping
and Schottky barrier modulation.[34]

Figure 2 presents analog RS characteristics of the Au/Nb:STO
device under different set/reset voltage ranges. By changing the
voltage sweep range between 1 and 3 V for set and between �2
and �6 V for reset, different shapes/sizes of I–V hysteresis were
realized, as shown in Figure 2a. Despite different voltage sweep
ranges, the device sets to the LRS at positive voltage and resets to
the HRS at negative voltage. Furthermore, the Au/Nb:STO
device exhibited good stability at each set and reset voltage range
as confirmed by 50 consecutive I–V loop measurements. It was
also observed that I–V hysteresis was gradually enlarged with
increased set/reset voltages, resulting in higher on/off ratios.
Specifically, the LRS current was significantly increased while
the HRS current was slightly reduced with increased set/reset
voltages. This process can be correlated to the extent of charge
trapping/detrapping at the Au/Nb:STO Schottky interface based
on the magnitude of applied voltage. Such analog and stable set/
reset operation of the Au/Nb:STO IT device lay a foundation for
the artificial synapse and neuromorphic computing applications.
The current ratio between HRS and LRS at fixed �0.2 V readout
is extracted in Figure 2b, which clearly shows the multilevel stor-
age ability of Au/Nb:STO based on the amplitude of set/reset
voltages. Furthermore, we analyzed the reliability of the device
with an endurance test under different read voltages (�0.2,
�0.4, and �1 V) and fixed set/reset at þ3 V/�6 V, as shown
in Figure 2c. A stable on/off current ratio of 103, 104, and 105

was achieved (>100 cycles) at read voltages of �0.2, �0.4,
�1 V, respectively. Similarly, a readout operation can be

Figure 1. a) Schematic of Au/Nb:STO/Au memristive device with Au disks as active electrodes and Au bar as a reference electrode. b) The schematic
diagram of a biological synapse that can be emulated by Au/Nb:STO/Au device. c) Current–Voltage (I–V ) characteristic of the device with a voltage
sweeping sequence of 0 V!þ3 V! 0 V!�6 V! 0 V. d,e) Low-resistance state (LRS) and high-resistance state (HRS) of the device under positive
bias. The dotted lines show the fitting of I–V curve in the low-voltage region.
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performed with a positive read voltage (0.2 V), as shown in
Figure S2, Supporting Information. No obvious differences were
observed in the HRS and LSR current distributions with �0.2 V
read voltages. To further verify the stability of the device, an
endurance measurement was carried out at �0.4 V for >104

cycles, as shown in Figure S3, Supporting Information.
Although the LRS current was slightly decreased, the on/off ratio
of >104 was still maintained after more than 10 000 consecutive
read/write cycles. Figure 2d and S4, Supporting Information,
show the retention properties of the device in which the current
versus time (I–t) curves were measured at �0.4 V with an inter-
val of 1 s after set/reset at 3 V/�6 V, respectively. The HRS cur-
rent was found to be generally stable even after 30 000 s while the
LRS current gradually decayed over time. The LRS current with
respect to time followed a power law with IðtÞ α t�0.19 at �0.4 V
and IðtÞ α t�0.06 at 0.4 V.[36] This minor current decay may be due
to the progressive trapping of charges which were detrapped dur-
ing the set process.[34] As the negative read voltage promotes
charge trapping process, LRS current decay was much faster with
�0.4 V readout than withþ0.4 V readout. The device maintained
a high on/off ratio of �104 at �0.4 V and 105 at 0.4 V. The per-
formance of the Au/Nb:STO IT devices was comparable or even
better than that of some other metal oxide-based FT memris-
tors.[41,43] From these experiments, it was confirmed that the
Au/Nb:STO device offered dynamic resistance (conductance)
as well as partially volatile/nonvolatile memory and thus can
be used to emulate biological synaptic functions. Different from
memory device applications which often require nonvolatile

characteristics, biological synapses exhibit some volatility.
Long decay times (as observed in Au/Nb:STO) are critical for
long-term memory in the brain.

Figure 3 presents the synaptic plasticity of the Au/Nb:STO
memristive device, which involves strengthening or weakening
of the conductance (synaptic weight) in response to training
pulses. Similar to biological synapses, whose synaptic weight
changes due to the flow of neurotransmitters (Ca2þ ions)
between two neurons in response to patterns of pre- and postsyn-
aptic spikes, our device also changed its postsynaptic current/
conductivity by voltage-induced charge migration. To explore
such synaptic behavior in the Au/Nb:STO, we performed system-
atic I–V measurements under sweep and pulsed modes. As
shown in Figure 3a,b, the device current successively increases
and decreases with repeated voltage sweep of 0 V!þ1 V and
0 V!�1 V, respectively. Corresponding current and voltage ver-
sus time (I–t, V–t) plots are shown in Figure 3c,d to demonstrate
the change in weight with 10 consecutive voltage sweep cycles.
An obvious increase (decrease) in current maxima is observed
after implementing consecutive positive (negative) voltage
sweeps, indicating subsequent changes in the conductance/
weight of the device. Such analog behavior of the Au/Nb:STO
device is essential to emulate the biological synaptic functions.
Furthermore, the device weight can be altered by applying pulsed
voltage signals. As shown in Figure 3e,f, the current of the device
was successively increased or decreased by 50 consecutive voltage
pulses (10ms pulse width) of 1.5 and �1.5 V, respectively. These
characteristics of the device can be associated with long-term

Figure 2. a) Fifty consecutive I–V curves of the Au/Nb:STO memristive device with different set and reset voltages. b) Multilevel current measured at a
fixed voltage of�0.2 V with different set and reset voltages shown in (a). c) Multilevel current measured at different read voltages (�0.2,�0.4, and�1 V)
with fixed set and reset voltages at 3 and �6 V, respectively. d) Retention curve of the device at �0.4 V read voltage and fixed set/reset at 3/�6 V.
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potentiation (LTP) and long-term depression (LTD) in the biolog-
ical synapse. Nonlinear current behavior with the number of
pulses (P) during potentiation (Ip) and depression (Id) can be
modeled by the following relations[44,45]

Ip ¼ Imin þ
Imax � Imin

1� e
�Pmax

A

� �
1� e

�P
Að Þ� �

(1)

Id ¼ Imax �
Imax � Imin

1� e
�Pmax

A

� �
1� e

P�Pmax
Að Þ� �

(2)

Where, Imax, Imin, Pmax, and A are the maximum current, min-
imum current, and maximum number of pulses (resp.) required
to switch the device between the minimum and maximum con-
ductance state and A is the fitting parameter that controls its non-
linear behavior. The extracted nonlinearity (NL) values for

the potentiation and depression curves are 9.97 and 7.93,
respectively.

We further investigated dynamic weight update in our device
based on postsynaptic voltage amplitude and duration. As shown
in Figure 4a,b, the device current at 0.8 V readout was gradually
increased and then tended to saturate with repetitive stimulation
of constant voltage pulses. Meanwhile, with increasing ampli-
tude of voltage pulses from 2 to 3.5 V and duration from 2 to
10ms, the device current range was also increased. In general,
the current increment occurred rapidly for first few write pulses
and then mildly increased for a higher number of training
pulses, which is similar to the synaptic response in the form
of LTP under the potentiating stimulus. These features of our
device mimic the synaptic weight change in the biological neu-
rons depending upon the amplitude and duration of stimulation
pulses. Moreover, the Au/Nb:STO memristive device has been

Figure 3. Memristive characteristics of the Au/Nb:STO device measured under different voltage sweeps and write pulses. a,b) Ten consecutive I–V loops
with voltage sweeps in positive (0 V! 1 V! 0 V) and negative (0 V!�1 V! 0 V) directions, respectively. c,d) Current and voltage versus time (I–V–t)
characteristics from (a) and (b). e,f ) Normalized current versus the number of voltage pulses showing potentiation and depression behavior of the Au/
Nb:STO at 1.5 and �1.5 V pulse of 10ms, respectively.
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explored to emulate more complicated biological synaptic plas-
ticity such as excitatory postsynaptic current (EPSC), paired-
pulse facilitation (PPF), and spike timing dependent plasticity
(STDP). In a biological synapse, an EPSC denotes a shot-term
plasticity (STP) caused by the influx of Ca2þ ions by the stimu-
lation of a presynaptic spike.[13] An EPSC manifests as an
enhancement in the amplitude when two presynaptic spikes
are rapidly evoked. As shown in Figure 4c, the second EPSC
current amplitude (A2) was higher than the first EPSC current
amplitude (A1) when two 1.5 V pulses were applied in quick
succession to the Au/Nb:STO device. Such synaptic function
is also known as PPF, which is the basis for temporal

information encoding of auditory or visual signals.[46] The value
of the PPF index is directly related to the time interval of the two
presynaptic spikes. To mimic PPF function from our device,
two successive pulses with fixed amplitude and width were
applied while the interval between the two spikes was increased
from 0.1 to 1 s. Read pulses of 0.8 V were set before and after the
two presynaptic spikes, as shown in the inset of Figure 4d. The
read voltage was chosen in such a way that it would not affect
the device conductance. The PPF index as a function of time
interval (Δt= t2–t1) is shown in Figure 4d. Weight change with
respect to paired voltage pulses was calculated based on the
equation[43]

Figure 4. a) Evolution of current with different amplitude of write voltages (2 to 3.5 V of 4 ms pulse width). b) Current evolution with write voltage pulse of
2 V and varying width between 2 and 10ms. The read voltage in (a) and (b) is 0.8 V. c) Excitatory postsynaptic current (EPSC) stimulated by a pair of
1.5 V/4ms pulses. d) Paired-pulse facilitation (PPF) index with respect to the time interval (Δt= tsecond–tfirst) between voltage spikes of 2 V. e) EPSC decay
curves measured after applying different number of 2.5 V/4ms pulses. The inset shows implementation of paired voltage spikes and read voltages.
f ) Synaptic weight (ΔW ) change as a function of pre- and postspike timing (Δt). The inset shows the prespike, postspike, and readout voltage.
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PPF ½%� ¼ A2 � A1

A1
� 100% (3)

Where, A1 and A2 are current amplitudes before and after the
paired pulse stimulation, respectively. The PPF index decreases
with increase in the pulse time interval, which is similar to the
PPF in biological synapse. The dependence of PPF index on Δt
can be well-fitted by the double-exponential function[47]

PPF½Δt� ¼ A1 e
�Δt

τ1 þ A2 e
�Δt

τ2 þ Yo (4)

Where, τ1 and τ2 are the fast and slow relaxation time constants,
respectively. τ1 and τ2 for our device were found to be 13 and
475ms. The relaxation time constant in our Au/Nb:STO system
is similar to the brain.[48,49]

Figure 4e shows the EPSC with different numbers of training
pulses. The EPSC decay rate is significantly reduced with
increased training pulses. Such behavior is associated with learn-
ing and longer memory retention (STP to LTP) with frequently
repeated training in biological synapses.[50] The temporal current
behavior in response to different numbers of training pulses was
well-fitted by Equation (4). τ1 and τ2 were successively increased
from 0.2 to 0.25 s and from 3.31 to 3.53 s as the number of train-
ing pulses was increased from 1 to 20, respectively. The increase
in relaxation time constants with training pulses indicates occur-
rence of LTP from STP. Furthermore, the Au/Nb:STO IT device
has been used to emulate STDP, which is a basis for asymmetric
Hebbian learning rule.[14,51] In STDP, the weight of a synapse
will be affected by the relative time difference (Δtpost-pre=
tpost–tpre) between the presynaptic and postsynaptic spikes.
Specifically, if the presynaptic spike arrives before a postsynaptic
spike (Δtpost-pre> 0), the synaptic weight will increase and other-
wise the weight will decrease. To emulate STDP in the Au/Nb:
STO device, the Au disk electrode was defined as the presynaptic
neuron whereas the Au bar was defined as the postsynaptic neu-
ron. The measurement scheme for STDP is shown in the inset of
Figure 4f where 0.8 V read pulse was set before and after the syn-
aptic spikes and the weight change (ΔW) was calculated based on
Equation (5). Based on the time difference between the presyn-
aptic and postsynaptic spikes, the synaptic weight update is sum-
marized in Figure 4f. When Δtpost-pre is positive (negative), the
weight increased (decreased), confirming the STDP behavior of
the Au/Nb:STO IT memristive device. In addition, the synaptic
weight change (ΔW) was studied with respect to the Δt between
pre- and postspikes, which showed a decreasing weight trend
with increased time interval that can be fitted by the equation.[52]

ΔW ¼ Wo þ Ae �Δt
τð Þ (5)

Figure 5 shows LTP and LTD properties of the Au/Nb:STO IT
memristive device based on different training pulse schemes.
The LTP and LTD are important synaptic functions for bidirec-
tional weight update in neuromorphic computing. The LTP in
our device was characterized either by a train of positive pulses
with increasing amplitudes or by the train of fixed positive
pulses. Similarly, LTD was realized with negative voltage pulses.
Three types of training pulse sequence were implemented, as
shown in Figure 5a,c,e. For reading, a fixed voltage of 0.8 V
was used that induced as limited conductance change in the

device. Figure 5a shows the type I training sequence with
increasing voltage pulses from 0.8 to 2.45 V for potentiation
and decreasing voltage pulses from �0.1 to �1.8 V for depres-
sion. The current gradually increased with the positive voltage
train and then decreased with the negative voltage train, as
shown in Figure 5b,c, shows the type II (1 to 3 V for potentiation
and fixed �0.5 V for depression) and Figure 5e shows type III
(fixed 1.6 V for potentiation and �1 V for depression) training
pulse configurations. Figure 5d,f shows the corresponding cur-
rent response. Although all three types of training sequences
showed potentiation/depression process, it has been reported
that linearity has a strong influence on learning accuracy for neu-
romorphic computing.[53] Furthermore, the potentiation/depres-
sion processes were cyclically reproduced without significant
cycle-to-cycle variation, as shown in Figure S5–S7, Supporting
Information. Minimal cycle-to-cycle variation in potentiation/
depression is desired for high learning efficiency in the neuro-
morphic computing. Thus, Au/Nb:STO IT memristive devices
serve as an excellent candidate for practical applications.[54]

Finally, the device response to various training pulses was
implemented in CrossSim to determine how linearity of the con-
duction response of a crossbar array of such devices affects the
performance for MNIST digital number recognition. CrossSim
uses the backpropagation (i.e., gradient descent computation)
algorithm to train the neural network.[55] Every image of the
input MNIST digits was chopped to a 28� 28 pixel array which
feeds the 784 input neurons, as shown in Figure 6a. The 10 out-
put neurons correspond to the 10 output digits. The realization of
such a neural network requires two crossbar arrays, as shown in
Figure 6b. Response data for over 80 set/reset cycles was used in
CrossSim to better represent the device’s stochastic switching
nature. Among different training schemes implemented in
our Au/Nb:STO device, the type I training scheme provided
the best linearity and symmetry for LTP/LTD. Thus, the LTP/
LTD based on type I training was chosen for creating artificial
neural network and related detail analysis. The ΔG versusG plots
for potentiation and depression cycles for type I response data
can be seen in Figure 6c and conduction responses for the other
two training configurations are shown in Figure S10, Supporting
Information. From these graphs, it appears that the device has a
tight range of ΔG values as G is varied in response with type I
potentiation/depression cycles. Although it is often believed that
the linearity of the conduction response plays a critical role on
prediction accuracy, the qualitative correlation between conduc-
tion response and prediction accuracy is largely unexplored.
Figure 6d shows the recognition accuracy of 28� 28 pixel
MNIST digital images with type I training configurations, which
is compared with the numerical model. After training the simu-
lated crossbar array for 25 epochs, the Au/Nb:STO synapse cross-
bar array attained a prediction accuracy of 94.72% whereas the
numerical model with ideal linear potentiation/depression
response showed an accuracy of 98.2%. A confusion matrix
for the 25th training epoch was generated for the type I potentia-
tion/depression response, as shown in Figure 6e. The confusion
matrix compares the actual value of the digit to the predicted
value of the digit. A well-trained neural network should produce
a diagonal line in the confusion matrix, representing high recog-
nition accuracy, as shown in the Figure 6e. In addition, a smaller
(64� 36� 10 neurons) neural network was simulated for the
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recognition of an 8� 8 pixel image as shown in Figure S11,
Supporting Information. After training the simulated crossbar
array with 8� 8 pixel images for 25 epochs, the Au/Nb:STO syn-
apse crossbar array attained a recognition accuracy of 94.71%
whereas the ideal numeric model obtained accuracy of 96.16%,
as shown in Figure S11c, Supporting Information. Similarly,
type II and type III potentiation/depression cycles with higher
nonlinearity exhibit recognition accuracies of 93.66 and 92.94%
at 25 epochs, respectively. The image recognition accuracy varied
within 1.7% under different potentiation/depression conditions,
indicating that the device can be adapted to diverse programming
pulses. It should also be mentioned that the performance of the
Au/Nb:STO synapse-based artificial neural network compared
favorably or even better than that of CF-RRAM,[56–58] and

I-RRAM memristors,[32,59] which can be correlated to the well-
controlled device resistance state change based on the voltage-
dependent charge trapping and detrapping at the Schottky
interface. Furthermore, Table 1 summarizes the performance
parameters of a recently reported IT memristive devices-based
artificial synapse, where the RS is mainly contributed by the dif-
fusion of Vo at the Schottky interface. Controlling Vo migration
in oxides could be challenging. Thus, an interface-dominated
charge trapping/detrapping phenomena could provide alterna-
tive solutions to improve the stability, uniformity, and reliability
of the interface-type memristive devices and related applications.
Comparing the performance parameters with various IT
memristive devices, the Au/Nb:STO device proposed in this
work stands out as a superior candidate for neuromorphic

Figure 5. Tuning the learning behavior of Au/Nb:STO device through training pulse modulation. The voltage pulse width is fixed at 40 ms. a) Increasing
voltage pulse train from 0.8 to 2.45 V for potentiation and from �0.1 to �1.8 V for depression. b) Corresponding change in potentiation and depression
current. c) Increasing voltage pulse train from 1 to 3.4 V for potentiation and fixed�0.5 V for depression. d) Corresponding current trend. e) Fixed voltage
pulse train of 1.6 V for potentiation and �1 V for depression. f ) Corresponding current trend. The readout voltage is fixed at 0.8 V. The potentiation/
depression sequence in (b), (d), and (f ) are indicated as type I, II, and III hereafter.
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computing applications with room for further improvements
such as smaller device size, larger device array, and CMOS inte-
gration. The studied phenomenology in Au/Nb:STO devices also
opens the possibility of studying experimental applications of
memristive-induced tunneling mechanisms, with applications
to gradient descent.[60,61]

3. Conclusion

In summary, the RS properties of the Au/Nb:STO IT memristive
devices have been explored for artificial synaptic functions and
neuromorphic applications. The Au/Nb:STO devices exhibited
interface-controlled RS behavior with a large analog memory
window, which was controlled by the modulation of the

Schottky barrier owing to charge trapping and detrapping at
the interface. Multiple biological synaptic functions such as
EPSC, PPF, LTP/LTD, and STDP were successfully emulated
based on the voltage-dependent analog RS characteristics of
the Au/Nb:STO devices. Furthermore, the memristive devices
demonstrated low device-to-device, cell-to-cell, and cycle-to-cycle
variability while maintaining high endurance, retention, and
potentiation/depression stability. The performance of these
Au/Nb:STO-based synapses in a neural network was simulated
using the CrossSim, and it achieved a high recognition accuracy
of �94.72% (94.71%) for 28� 28 (8� 8) pixel handwritten
MNIST digits. Furthermore, the correlation between nonlinear-
ity of potentiation/depression curves and recognition accuracy
was explored. This work demonstrates that interface-controlled
memristive devices with analog and homogeneous RS can be

Figure 6. a) Input image (28� 28 pixel) for digit 0 and an illustration of a neural network crossbar simulator with 784 input layers, 300 hidden layers, and
10 output layers. b) Schematic of a memristor crossbar array used for simulating neural network. c) Conductance variation (ΔG) versus G plots for
potentiation and depression with respect to type I training sequence of the Au/Nb:STO device. d) Recognition accuracy of the simulated crossbar array
based on type I training sequence compared with the ideal numeric model. e) Confusion matrix of the 25th epoch.
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used to develop highly reliable synaptic devices for neuromor-
phic computing.

4. Experimental Section

Device Fabrication and Characterization: Nb:STO substrates (1.4 wt% of
Nb, 0.5mm thick, single-side polished) purchased from CrysTech (GmbH,
Germany) were used to fabricate memristive devices. Circular Au disks (cells)
and bar with the thickness of 100 nm were deposited using e-beam evapora-
tion through predesigned metal mask at 140 °C on these Nb:STO substrates.
Au disk (serving as top electrode) was about 0.07mm2 whereas the size of
the Au bar (serving as the bottom electrode) was about 10mm2. The contact
between Nb:STO/Au bar was Ohmic. The schematic illustration of the Au/
Nb:STO/Au memristive device is shown in Figure 1a. Electrical measure-
ments were performed with Agilent E4980A LCR and Keithley 2450 source
measure units (SMUs). The SMUs could precisely measure I–V under direct
current (DC) voltage sweep and pulsed voltage mode. Voltage amplitude,
pulse duration, and pulse frequency were precisely tuned to achieve various
synaptic responses from the device. All electrical measurements were carried
out in ambient condition (relative humility �20%) with the bias applied on
the top Au disks and with the Au bar grounded as displayed in Figure 1a.

Neural Network Simulation: The neural network was constructed with
three fully connected layers: input, hidden, and output layers, each layer
with 784, 300, and 10 neurons, respectively. MNIST database was used to
train and test the neural network, which consists of 60 000 training images
(28� 28 pixels) and 10 000 testing images. The MNIST database has been
widely used in training and testing artificial neural networks and represents
handwritten digits from 0 to 9. The conductance characteristics of the Au/
Nb:STO devices based on different training pulse schemes were linearly
mapped to embody the synaptic weights of the neural network. Therefore,
the nonlinearity and asymmetry of the LTP and LTD determined the per-
formance of neural network simulation.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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